

Clien	t: City of Gustavus		Product:	2022 Cur			Date Reported:	04/14/23	
	Attn: Paul Berry PO BOX 1			Date Sample Date Receive			Laboratory #	C23-476 Brent Thyssen, (CPSSc
	Gustavus, AK 99826			Date Necelve	Invoice #:	C23-476	PO#:	Signi Hiyosell, (51 000
	907-697-2118						Amount:	\$255.00	
				Nutrie	ents				
	Method	As Received	Dry Wt.	Units	Low	Normal		High	Typical Range
Moisture	70 C	58		%		*****	**		15 to 40
Solids	70 C	42		%	*****				60 to 85
pН	1:5	7.6	NA	SU	*****	****			5.5 to 8.5
E.C. (Sol. Salts)	1:5	2.8	6.5	mmhos/cm	*****	**			below 5.0
Total N	TMECC 04.02D	1.09	2.57	%	*****	*****			1 to 5
Organic C	TMECC 04.01A	9.9	23.4	%	*****	*			18 to 45
Organic Matter	TMECC 05.07A	23.1	54.7	%	*****	******			40 to 60
Ash	550 C	19.2	45.3	%	*****	*			40 to 60
Ammonium -N	TMECC 05.02C	124	293	mg/kg	****	*****			90 to 450
Nitrate-N	TMECC 04.02B	220	520	mg/kg	*****	******	****		50 to 250
Phosphorous	TMECC 04.12B/04.14A	0.27	0.65	%					
P₂O₅	calculation	0.63	1.49	%	*****	*			1 to 8
Potassium	TMECC 04.12B/04.14A	0.29	0.67	%					
K₂O	calculation	0.34	0.81	%	****				3 to 12
Calcium	TMECC 04.12B/04.14A	3.24	7.7	%	****	******			0.5 to 10
Magnesium	TMECC 04.12B/04.14A	0.14	0.33	%	****	******			0.05 to 0.7
Sodium	TMECC 04.12B/04.14A	0.24	0.56	%	*****	*****			0.05 to 0.7
Sulfur	TMECC 04.12B/04.14A	0.12	0.30	%	*****	****			0.1 to 1.0
Boron	TMECC 04.12B/04.14A	6	13	mg/kg	*****				25 to 150
Zinc	TMECC 04.12B/04.14A	28	65	mg/kg	****				100 to 600
Manganese	TMECC 04.12B/04.14A	54	128	mg/kg	****				250 to 750
Copper	TMECC 04.12B/04.14A	9	21	mg/kg	***				100 to 500
Iron	TMECC 04.12B/04.14A	2585	6108	mg/kg	*****	*****			1000 to 25000
C/N ratio			9	ratio	****				18 to 24
C/P Ratio			36	ratio	****				80 to 140

Respiration & Stability

	Method		Units	Low	Normal	High	Normal
CO2 Evolution	TMECC 05.08	0.3	mg CO ₂ -C/g OM/day	**			1 to 7
_	TMECC 05.08	0.5	mg CO ₂ -C/g TS/day	*****	*		0.5 to 5
Stability Rating		Very Stable					
-							

Sample was received, handled and tested in accordance with TMECC procedures

Page 1

Client:	City of Gustavus	Product: 2022 Cure Pile	Date Reported: 04/14/23
	PO BOX 1	Date Sampled: 03/27/23	Laboratory # C23-476
	Gustavus, AK 99826	Date Received: 03/30/23	Reveiwed by Brent Thyssen, CPSSc
	907-697-2118		

.

	Cucumber Bioassay								
	Method		Units	Low	Normal	Normal			
Emergence	TMECC 05.05A	100	%	**************************************					
Vigor	TMECC 05.05A	82	%	******		85 to 100			
Maturity	Aaturity Mature: safe for use on gardens and fields								

Pathogens								
Date Tested 4/4/2023								
	Method		units		Low	Normal	High	Normal
Fecal Coliforms	TMECC 07.01AB	NOT TESTED	MPN/g					Less than 1000
Salmonella	TMECC 07.02A	ND	MPN/4g	Pass	*			Less than 3
-		ND = None Dete	cted Fee	cal Coliforms MI	DL 5.4	MPN/g Salr	nonella MDL 1	MPN/4g

EPA 503 Metals								
	Method	Dry Wt.	Units	Low	Normal	High	MDL	EPA Limit
Arsenic	TMECC 04.12B/04.14A	<mdl< td=""><td>mg/kg</td><td></td><td></td><td></td><td>1.05</td><td>41</td></mdl<>	mg/kg				1.05	41
Cadmium	TMECC 04.12B/04.14A	<mdl< td=""><td>mg/kg</td><td></td><td></td><td></td><td>0.19</td><td>39</td></mdl<>	mg/kg				0.19	39
Chromium	TMECC 04.12B/04.14A	8.4	mg/kg				0.17	-
Cobalt	TMECC 04.12B/04.14A	1.6	mg/kg	****			0.11	1200
Copper	TMECC 04.12B/04.14A	21.4	mg/kg	****			0.25	1500
Mercury	TMECC 04.12B/04.14A	0.02	mg/kg	****			0.002	17
Molybdenum	TMECC 04.12B/04.14A	2.9	mg/kg	****			0.08	75
Nickel	TMECC 04.12B/04.14A	4.1	mg/kg	****			0.23	420
Lead	TMECC 04.12B/04.14A	<mdl< td=""><td>mg/kg</td><td></td><td></td><td></td><td>0.87</td><td>300</td></mdl<>	mg/kg				0.87	300
Selenium	TMECC 04.12B/04.14A	5.10	mg/kg	*****			0.59	36
Zinc	TMECC 04.12B/04.14A	65	mg/kg	****			0.74	2800
	Metals Ass	av Pass	•			•		

Particle Size Distribution TMECC 2.02 B & C

inches	mm	% Passing	Inerts	% by wt.
3	76.2	100		
2	50	100	Total Plastic	0.00
1	25	96	Film Plastic	0.00
3/4	19.1	82	Glass	0.00
5/8	16	76	Metal	0.00
1/2	12.5	67		0.00
3/8	9.5	52		
1/4	6.3	29	Total	0.00

Sample was received, handled and tested in accordance with TMECC procedures

Page 2

City of Gustavus Attn: Paul Berry PO BOX 1 Gustavus, AK 99826 907-697-2118 DATE REC 30-Mar-23 INVOICE # 30-Mar-23 LAB # C23-476 Date Reported: 04/14/23

NUTRIENT REPORT

SAMPLE I.D.:	2022 Cure Pil	е			
As Received:	<u>%SOLIDS</u> 42.32		<u>%WATER</u> 57.68		
TOTAL	100%[AS REC	
ELEMENTS	100%L %	lbs/ton	-	AS REC %	Ibs/ton
TN	2.57	51.40		1.09	21.8
P	0.65	12.98		0.27	5.5
P205	1.49	29.85		0.63	12.6
к <u>–</u> ес	0.67	13.49		0.29	5.7
K20	0.81	16.19		0.34	6.9
S	0.30	5.91		0.12	2.5
Ca	7.67	153.3		3.24	64.9
Mg	0.33	6.59		0.14	2.8
Na	0.56	11.27		0.24	4.8
С	23.40	468		9.9	198
	mg/kg	lbs/ton		mg/kg	lbs/ton
Zn	65	0.13		28	0.06
Mn	128	0.26		54	0.11
Cu	21	0.04		9	0.02
Fe	6108	12.22		2585	5.17
В	13	0.03		5.50	0.01
Nitrate N	520	1.04		220.0	0.44
Ammonium N	293	0.59		124	0.25
C:N Ratio				9	
pН				7.6	
E.C.	6.53			2.76	

Lab # C23-476 INTERPRETATION GUIDE SAFETY INTERPRETATIONS Pathogens Fecal coliform bacteria are present in the gut and fecal mater of warm-blooded animals. Their presence is used as an indicator of the presence of possible human pathogens. The heat generated during proper composting is lethal to fecal coliform and other human pathogens. A test value below 1,000 per gram of compost is considered generally safe for human contact. As the compost is stored or transported, the temperature is no longer lethal for coliform bacteria and there is the possibility for regrowth or contamination by birds or other animals. Your compost was not tested for fecal coliform. Salmonella is a human pathogenic bacteria and a good indicator of other human pathogens. It is regularly used to monitor the liklihood of human pathogen presence in biosolids. Your compost was tested for salmonella bacteria and found to be: VERY SAFE Heavy Metals 9 heavy metals were identified with maximum concentration limits for land application in biosolids by USEPA in 40 CFR Part 503, B. Ongoing applications to the land are prohibited if any metal concentration exceed the limits in Table 3 of Part 503.13. If the bars on the "Heavy Metals" for your compost are within or below the "Normal" range, your compost is safe to use as a soil amendment. COMPOST STABILITY AND MATURITY Respiration Respiration is the measurement of microbially generated CO2 from the compost when incubated at optimal temperature and moisture. It provides an indication of whether the composting process is complete and whether the compost is mature and ready for use. However, other factors may be limiting microbial activity (see C:N Ratio below) Your Compost was rated as Very Stable: well cured, finished compost; no odors or plant toxicity Bioassay Cucumbers are grown in a fixed blend of your compost and a commercial potting mix maintained at optimum moisture and temperature. Cucumbers are relatively insensitive to salinity, but very sensative to ammonia, organic acids and herbicide residue. Emergence and Vigor are rated: results greater than 80% indicate that your compost is mature and/or contains no hervicide carryover. Very high salinity can also reduce assay results. Your Compost Emergence % 100 Your Compost vigor % 82 Total Nitrogen, Nitrate & Ammonium Ammonia is produced as a gas in the early stages of composting. The ammonium is nitrified to nitrate as the compost matures. Ammonia is

toxic to plants at relatively low concentrations but under moist conditions is converted to ammonium which is less toxic. Nitrate is not toxic, but does contribute to overall salinity if very high. The pH of the compost typically starts out low as organic acids are released, then increases as ammonia is produced, then settles back towards nuetral (7.0) as ammonium is nitrified and the compost matures.

Your Compost Ammonium level was	293	Your Compost Ammonium:Nitrate ratio was	1
Your Compost Ammonium: Total N ratio was	0.01	Your Compost pH was	7.6

Considering all the factors above, your Compost is Mature: safe for use on gardens and fields

9

FERTILITY INTERPRETATIONS

Client: City of Gustavus

Product: 2022 Cure Pile

C:N Ratio

Maturity

The carbon to nitrogen ratio is important to determine 1) if the composting process is complete or simply stalled out because of lack of nitrogen and 2) whether the compost, when applied to the soil, will act as a source of nitrogen for the crop or become a sink causing the crops to starve for nitrogen.

Your C:N ratio was

Your compost is likely high in soluble N, watch for high ammonia levels as they can injure crops.

Electrical Conductivity/Salinity

Electrical Conductivity is a convenient way to evaluate the soluble salts or salinity of a compost. High salinity is damaging to plants. 6.5 M. High: best to dilute 1:3 to 1:10 for most applications The EC of your Compost was

Page 4

Date Sampled: 03/27/23 03/30/23 Date Received: Date Reported: 04/14/23